
www.mathcounts.org
Get the solution at www.mathcounts.org/poster

Allie passes a flag every six seconds, and Alex passes a flag every five seconds. We can write equations for each of their distances since distance $=$ rate \times time. Alex's distance will be $1 / 5 \times t$, where t represents the time in seconds from when Alex starts skiing and the distance is measured in the number of flags passed. Allie's distance will be $1 / 6 \times(t+6)$, since she has a 6 second head start on Alex. To find when Alex will reach Allie, we can set the two expressions to be equal and solve for t.
$\left(\frac{1 \text { flag }}{5 \text { seconds }}\right) \times t$ seconds $=\left(\frac{1 \text { flag }}{6 \text { seconds }}\right) \times(t+6)$ seconds
$\frac{t}{5}=\frac{t+6}{6}$
$\frac{1}{5} t=\frac{1}{6} t+1$
$\left(\frac{1}{5}-\frac{1}{6}\right) t=1$
$\frac{1}{30} t=1$
$t=30$

Alex will reach Allie after $\mathbf{3 0}$ seconds.

Another way to solve this problem is to use a table to show distance verses time. Measuring time from when Alex starts skiing, we can fill in the following table.

Distance (Flags)	Allie's Time (Seconds)	Alex's Time (Seconds)
1	0	5
2	6	10
3	12	15
4	18	20
5	24	25
6	30	30

We see that Allie and Alex will both be at flag number six at $\mathbf{3 0}$ seconds.

